ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects.

نویسندگان

  • Haiyan Qiu
  • Sebum Lee
  • Yulei Shang
  • Wen-Yuan Wang
  • Kin Fai Au
  • Sherry Kamiya
  • Sami J Barmada
  • Steven Finkbeiner
  • Hansen Lui
  • Caitlin E Carlton
  • Amy A Tang
  • Michael C Oldham
  • Hejia Wang
  • James Shorter
  • Anthony J Filiano
  • Erik D Roberson
  • Warren G Tourtellotte
  • Bin Chen
  • Li-Huei Tsai
  • Eric J Huang
چکیده

Autosomal dominant mutations of the RNA/DNA binding protein FUS are linked to familial amyotrophic lateral sclerosis (FALS); however, it is not clear how FUS mutations cause neurodegeneration. Using transgenic mice expressing a common FALS-associated FUS mutation (FUS-R521C mice), we found that mutant FUS proteins formed a stable complex with WT FUS proteins and interfered with the normal interactions between FUS and histone deacetylase 1 (HDAC1). Consequently, FUS-R521C mice exhibited evidence of DNA damage as well as profound dendritic and synaptic phenotypes in brain and spinal cord. To provide insights into these defects, we screened neural genes for nucleotide oxidation and identified brain-derived neurotrophic factor (Bdnf) as a target of FUS-R521C-associated DNA damage and RNA splicing defects in mice. Compared with WT FUS, mutant FUS-R521C proteins formed a more stable complex with Bdnf RNA in electrophoretic mobility shift assays. Stabilization of the FUS/Bdnf RNA complex contributed to Bdnf splicing defects and impaired BDNF signaling through receptor TrkB. Exogenous BDNF only partially restored dendrite phenotype in FUS-R521C neurons, suggesting that BDNF-independent mechanisms may contribute to the defects in these neurons. Indeed, RNA-seq analyses of FUS-R521C spinal cords revealed additional transcription and splicing defects in genes that regulate dendritic growth and synaptic functions. Together, our results provide insight into how gain-of-function FUS mutations affect critical neuronal functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RBM45 competes with HDAC1 for binding to FUS in response to DNA damage

DNA damage response (DDR) is essential for genome stability and human health. Recently, several RNA binding proteins (RBPs), including fused-in-sarcoma (FUS), have been found unexpectedly to modulate this process. The role of FUS in DDR is closely linked to the pathogenesis of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease that affects nerve cells in the brain and ...

متن کامل

Sequestration of PRMT1 and Nd1-L mRNA into ALS-linked FUS mutant R521C-positive aggregates contributes to neurite degeneration upon oxidative stress

Mutations in fused in sarcoma (FUS), a DNA/RNA binding protein, are associated with familial amyotrophic lateral sclerosis (ALS). However, little is known about how ALS-causing mutations alter protein-protein and protein-RNA complexes and contribute to neurodegeneration. In this study, we identified protein arginine methyltransferase 1 (PRMT1) as a protein that more avidly associates with ALS-l...

متن کامل

PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage

Amyotrophic lateral sclerosis (ALS) is associated with progressive degeneration of motor neurons. Several of the genes associated with this disease encode proteins involved in RNA processing, including fused-in-sarcoma/translocated-in-sarcoma (FUS/TLS). FUS is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins that bind thousands of pre-mRNAs and can regulate the...

متن کامل

FUS-regulated RNA metabolism and DNA damage repair

Cytoplasmic inclusion of RNA binding protein FUS/TLS in neurons and glial cells is a characteristic pathology of a subgroup of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Dysregulation of RNA metabolism caused by FUS cytoplasmic inclusion emerges to be a key event in FUS-associated ALS/FTD pathogenesis. Our recent discovery of a FUS autoregulatory mechanism and its dy...

متن کامل

FUS is phosphorylated by DNA-PK and accumulates in the cytoplasm after DNA damage.

Abnormal cytoplasmic accumulation of Fused in Sarcoma (FUS) in neurons defines subtypes of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). FUS is a member of the FET protein family that includes Ewing's sarcoma (EWS) and TATA-binding protein-associated factor 2N (TAF15). FET proteins are predominantly localized to the nucleus, where they bind RNA and DNA to mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 124 3  شماره 

صفحات  -

تاریخ انتشار 2014